- General Workflow: ETL

- General Workflow: ETL ~> 'Analytics'

- General Workflow: ETL \rightsquigarrow 'Analytics' \rightsquigarrow 'Outliers'

 General Workflow: ETL → 'Analytics' → 'Outliers' → 'Deep Dive'

- General Workflow: ETL → 'Analytics' → 'Outliers' → 'Deep Dive'
- Push Button Time Allocation within Data Scientists:

- General Workflow: ETL → 'Analytics' → 'Outliers' → 'Deep Dive'
- Push Button Time Allocation within Data Scientists:
 - Analytics ($\sim 25\%)$
 - Deep Dive (~ 75%)

- General Workflow: ETL → 'Analytics' → 'Outliers' → 'Deep Dive'
- Push Button Time Allocation within Data Scientists:
 - Analytics (\sim 25%)
 - Deep Dive ($\sim 75\%$)
 - A Deep Dive Dip Into Deep Dive

- General Workflow: ETL → 'Analytics' → 'Outliers' → 'Deep Dive'
- Push Button Time Allocation within Data Scientists:
 - Analytics (\sim 25%)
 - Deep Dive ($\sim 75\%$)
 - A Deep Dive Dip Into Deep Dive
 - Manual sifting of small data

- General Workflow: ETL → 'Analytics' → 'Outliers' → 'Deep Dive'
- Push Button Time Allocation within Data Scientists:
 - Analytics (\sim 25%)
 - Deep Dive (~ 75%)

A Deep Dive Dip Into Deep Dive

- Manual sifting of small data
- Find 'interesting' outliers

- General Workflow: ETL → 'Analytics' → 'Outliers' → 'Deep Dive'
- Push Button Time Allocation within Data Scientists:
 - Analytics (\sim 25%)
 - Deep Dive (~ 75%)

A Deep Dive Dip Into Deep Dive

- Manual sifting of small data
- Find 'interesting' outliers
- Tell story about those outliers

- General Workflow: ETL → 'Analytics' → 'Outliers' → 'Deep Dive'
- Push Button Time Allocation within Data Scientists:
 - Analytics ($\sim 25\%$)
 - Deep Dive ($\sim 75\%$)

A Deep Dive Dip Into Deep Dive

- Manual sifting of small data
- Find 'interesting' outliers
- Tell story about those outliers
- Including, why the outlier was flagged as such

- General Workflow: ETL → 'Analytics' → 'Outliers' → 'Deep Dive'
- Push Button Time Allocation within Data Scientists:
 - Analytics (\sim 25%)
 - Deep Dive ($\sim 75\%$)
 - A Deep Dive Dip Into Deep Dive
 - Manual sifting of small data
 - Find 'interesting' outliers
 - Tell story about those outliers
 - Including, why the outlier was flagged as such

Aim: Better ways of learning about, and from outliers.

- Three components:

- Three components:
 - Data driven account of why an outlier is an outlier

- Three components:
 - Data driven account of why an outlier is an outlier
 - Data driven inference about patterns of outliers

- Three components:

- Data driven account of why an outlier is an outlier
- Data driven inference about patterns of outliers
- Diving Deeply More Quickly

- Three components:
 - Data driven account of why an outlier is an outlier
 - Data driven inference about patterns of outliers
 - Diving Deeply More Quickly
- (Better) Know Your IP

- Three components:
 - Data driven account of why an outlier is an outlier
 - Data driven inference about patterns of outliers
 - Diving Deeply More Quickly
- (Better) Know Your IP
 - Gets 'known knowns' and 'easily knowns'

- Three components:

- Data driven account of why an outlier is an outlier
- Data driven inference about patterns of outliers
- Diving Deeply More Quickly

- Gets 'known knowns' and 'easily knowns'
- Where: Lat/Long, City, Country, Time zone

- Three components:

- Data driven account of why an outlier is an outlier
- Data driven inference about patterns of outliers
- Diving Deeply More Quickly

- Gets 'known knowns' and 'easily knowns'
- Where: Lat/Long, City, Country, Time zone
- Which ports are open, which services are running

- Three components:

- Data driven account of why an outlier is an outlier
- Data driven inference about patterns of outliers
- Diving Deeply More Quickly

- Gets 'known knowns' and 'easily knowns'
- Where: Lat/Long, City, Country, Time zone
- Which ports are open, which services are running
- Ping and traceroute

- Three components:

- Data driven account of why an outlier is an outlier
- Data driven inference about patterns of outliers
- Diving Deeply More Quickly

- Gets 'known knowns' and 'easily knowns'
- Where: Lat/Long, City, Country, Time zone
- Which ports are open, which services are running
- Ping and traceroute
- Blacklisted or not, and for what

- Three components:

- Data driven account of why an outlier is an outlier
- Data driven inference about patterns of outliers
- Diving Deeply More Quickly

- Gets 'known knowns' and 'easily knowns'
- Where: Lat/Long, City, Country, Time zone
- Which ports are open, which services are running
- Ping and traceroute
- Blacklisted or not, and for what
- Zmap and Zgrab scans of IPv4

- Geocoding:

- Geocoding:
 - Start with DB of known 'landmarks'

- Geocoding:
 - Start with DB of known 'landmarks'
 - Compute maximum distance to last router from multiple landmarks using max. Internet speed

- Geocoding:
 - Start with DB of known 'landmarks'
 - Compute maximum distance to last router from multiple landmarks using max. Internet speed
 - Gives an approximate bounding box. Take centroid of that.

- Geocoding:
 - Start with DB of known 'landmarks'
 - Compute maximum distance to last router from multiple landmarks using max. Internet speed
 - Gives an approximate bounding box. Take centroid of that.
 - Average geolocation error can be hefty. For instance, GeolPInfo puts me \sim 30 miles away

- Geocoding:
 - Start with DB of known 'landmarks'
 - Compute maximum distance to last router from multiple landmarks using max. Internet speed
 - Gives an approximate bounding box. Take centroid of that.
 - Average geolocation error can be hefty. For instance, GeolPInfo puts me \sim 30 miles away
- Time Zone

- Geocoding:
 - Start with DB of known 'landmarks'
 - Compute maximum distance to last router from multiple landmarks using max. Internet speed
 - Gives an approximate bounding box. Take centroid of that.
 - Average geolocation error can be hefty. For instance, GeolPInfo puts me \sim 30 miles away

- Time Zone

- Globe split into 24 Time Zones. Conditional on lat/long, we know time zone.

- Geocoding:

- Start with DB of known 'landmarks'
- Compute maximum distance to last router from multiple landmarks using max. Internet speed
- Gives an approximate bounding box. Take centroid of that.
- Average geolocation error can be hefty. For instance, GeolPInfo puts me \sim 30 miles away

- Time Zone

- Globe split into 24 Time Zones. Conditional on lat/long, we know time zone.
- But countries create own rules

- Geocoding:

- Start with DB of known 'landmarks'
- Compute maximum distance to last router from multiple landmarks using max. Internet speed
- Gives an approximate bounding box. Take centroid of that.
- Average geolocation error can be hefty. For instance, GeolPInfo puts me \sim 30 miles away

- Time Zone

- Globe split into 24 Time Zones. Conditional on lat/long, we know time zone.
- But countries create own rules
- India, for instance, has 30 minute offset. Or for e.g., Mountain Time

- Geocoding:

- Start with DB of known 'landmarks'
- Compute maximum distance to last router from multiple landmarks using max. Internet speed
- Gives an approximate bounding box. Take centroid of that.
- Average geolocation error can be hefty. For instance, GeolPInfo puts me \sim 30 miles away
- Time Zone
 - Globe split into 24 Time Zones. Conditional on lat/long, we know time zone.
 - But countries create own rules
 - India, for instance, has 30 minute offset. Or for e.g., Mountain Time

- Active scanning (ping, traceroute)

Notes and Concerns

- Geocoding:

- Start with DB of known 'landmarks'
- Compute maximum distance to last router from multiple landmarks using max. Internet speed
- Gives an approximate bounding box. Take centroid of that.
- Average geolocation error can be hefty. For instance, GeolPInfo puts me \sim 30 miles away
- Time Zone
 - Globe split into 24 Time Zones. Conditional on lat/long, we know time zone.
 - But countries create own rules
 - India, for instance, has 30 minute offset. Or for e.g., Mountain Time

- Active scanning (ping, traceroute)

- You give away your location. tcpdump.

- Links to:
 - GeoNames
 - MaxMind
 - Virustotal
 - IpVoid
 - AbuseIPDB
 - Shodan
 - Censys
 - Ping
 - Traceroute
 - tzwhere

- Links to:
 - GeoNames
 - MaxMind
 - Virustotal
 - IpVoid
 - AbuseIPDB
 - Shodan
 - Censys
 - Ping
 - Traceroute
 - tzwhere

- Rate limits for free tier

- Links to:
 - GeoNames
 - MaxMind
 - Virustotal
 - IpVoid
 - AbuseIPDB
 - Shodan
 - Censys
 - Ping
 - Traceroute
 - tzwhere
- Rate limits for free tier
- Use it for a handful of IPs

- Installation

```
pip install know_your_ip
```

If traceroute not installed on Linux sudo apt-get install traceroute

- Installation

pip install know_your_ip

If traceroute not installed on Linux sudo apt-get install traceroute

- Components:

- Installation

```
pip install know_your_ip
```

If traceroute not installed on Linux sudo apt-get install traceroute

- Components:
 - Configuration file: know_your_ip.cfg

```
[abuseipdb]
enable = 1
user_id = 1234
key = a0fbe08ccef49245179490713e551b589
cat_catid = abuseipdb_cat_catid.csv
[ipvoid]
enable = 1
```

Components of KIP

What columns do you want columns.txt

Ping
ping.timeout
ping.count
ping.max
...

abuseipdb API abuseipdb.bad_isp abuseipdb.categories abuseipdb.reports abuseipdb.total

• • •

Using KIP

```
python know_your_ip.py
```

Paths

- --file path_to_input_file (default input.csv)
- --config path_config_file (default know_your_ip.cfg)
- --output path_to_output_file (default output.csv)
- # Max connections (multi-threaded)
- --maxconn MAX_CONN
- # From/to Row
- --from from_row
- --to to_row
- # Verbose
- --verbose verbose

Actually Using KIP

```
# For one/few IP(s)
python know_your_ip.py 94.31.29.154
python know_your_ip.py 94.31.29.154 204.2.197.211
# File, some rows
python know_your_ip.py --file input_small.csv --from 1
--to 2
```